

Dr. Nguyễn Quỳnh Anh Department of Respiration 1

CONTENTS

- Preface
- 2. Definition
- 3. Etiology
- 4. Symptoms
- Complications
- 6. Diagnostic
- 7. Treatment
- 8. NCPAP
- Summary

PREFACE

- Recent data from the USA and Europe: 14 -49% of middle-aged men have clinically significant OSA
- 2 3% of all children from the newborn age to adolescence
- Equally in boys and girls
- A peak incidence in 2 and 8 years

DEFINITION

- Obstructive sleep apnea (OSA) is defined as ≥ 5 episodes of apnea (nonbreathing) lasting ≥ 10 per hour of sleep
- Characterised by intermittent partial and/or complete upper airway obstruction during sleep that may impair normal ventilation and sleep pattern

ETIOLOGY

TABLE 2. Risk H	actors for OSA in Children		
Anatomic	Adenotonsillar hypertrophy		
	 Nasal polyps 		
	Nasal tumors		
	Allergic rhinitis		
	 Anomalies of craniofacial bones 		
	Retrognathia – Pierre-Robin sequence Micrognathia – Pierre-Robin		
	 Midface hypoplasia – Down syndrome 		
	Cleft palate		
	 Macroglossia 		
	Obesity		
Functional	 Generalized hypotonia in neuromuscular diseases e.g., muscular dystrophies 		
	 Effect of sedative hypnotics 		
	 Achondroplasia 		
	 Spina bifida – myelomeningocele 		
	 Mucopolyssacharidosis 		
	 Prematurity 		
	Family history of OSA		

SYMPTOMS

Table 3. Symptoms of OSA in Children

Nighttime symptoms	Snoring
0 , 1	Sleeping in unusual positions
	Nocturnal sweating
	• Enuresis
Daytime symptoms	Daytime somnolence – rare in children
	 Aggressiveness
	• Anxiety
	Hyperactivity
	 Inattentiveness
	 Learning difficulties
	Deterioration in academic performance
	Morning headaches
	Mouth breathing
	History of recurrent infectious illness

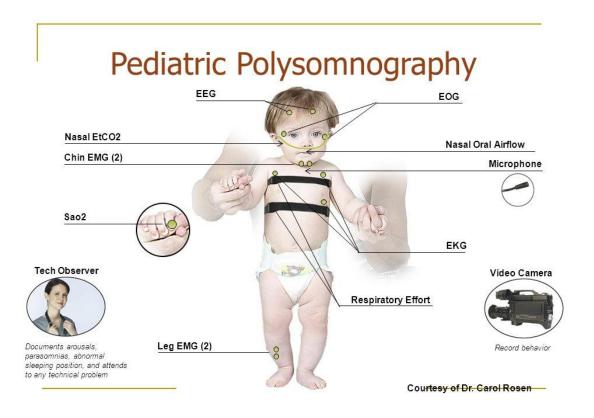

COMPLICATIONS

Table 4. Complications of OSA in Children

Behavioral	 Aggression 			
	 Hyperactivity 			
	 Anxiety 			
	 Depressed mood 			
	 Psychosocial difficulties 			
	 Nocturnal enuresis 			
Cognitive	 Inattentiveness 			
	 Impaired executive functioning 			
	 Impaired memory 			
	 Impaired scholastic function 			
Cardiopulmonary	Systemic hypertension			
	 Impaired right ventricular function–rare 			
	 Cor pulmonale – rare 			
Growth and	Failure to thrive			
metabolism	 Delayed physical growth 			

DIAGNOSTIC

 Polysomnography remains the gold standard of pediatric OSA

DIAGNOSTIC

- Apnea-hypopnea index (AHI) is the total number of apneas and hypopneas that occur divided by the total duration of sleep in hours
 - < 1: normal
 - 1 5: very mildly increased
 - 5 10: mildly increased
 - 10 − 20: moderately increased
 - > 20: severely abnormal

TREATMENT

Indications:

- AHI > 5, irrespective to the presence of morbidity
- AHI 1 5, with OSA-related morbidity
- Increasing body mass index percentile and male gender are risk factor for persistent OSA
- Subjects with neuromuscular disorders and craniofacial anomalies

TREATMENT

- Administration of anti-inflammatory medications
- Adenotonsillectomy
- Weight loss
- Use of orthodontic appliance
- Nasal continuous airway pressure (NCPAP)
- Tracheostomy

- NCPAP is delivered by a flow generator to the patient via nasal mask or modified nasal prongs
- The device provides a "pneumatic splint" of the upper airway, preventing excessively high negative inspiratory pressures which cause closure of this airway segment

Indications:

- Children who are not eligible for adenoidectomy and tonsillectomy (T & A)
- Children whose sleep-breathing disorder persisted despite T & A

clinical investigations

Obstructive Sleep Apnea in Infants and Its Management With Nasal Continuous Positive Airway Pressure*

Frances McNamara, PhD; and Colin E. Sullivan, MBBS, PhD

Table 2—Average Respiratory and Sleep Variables for Diagnostic and CPAP Studies*

Variables	Diagnostic Study	CPAP Study
Total sleep time, min	488.6 ± 14.6	445.1 ± 14.7
Mean length NREM episodes, min	15.9 ± 1.0	21.6 ± 1.4 †
Mean length REM episodes, min	6.3 ± 0.6	$13.2 \pm 0.8 \dagger$
% REM sleep	16.0 ± 1.2	28.8 ± 0.9 †
% SWS	34.2 ± 1.9	37.5 ± 2.5
% stage I/II NREM	49.8 ± 1.6	$33.7 \pm 1.9 \dagger$
NREM		
Total apnea index, apneas/h	44.4 ± 9.3	$9.5 \pm 1.2 \ddagger$
Central apnea index, apneas/h	29.8 ± 7.6	$9.4 \pm 1.2 \ddagger$
Obstructive apnea index, apneas/h	14.6 ± 39	$0.1 \pm 0.1 \ddagger$
Desaturation index, desaturations/h	37.8 ± 8.9	$4.1 \pm 0.9 \ddagger$
REM	\	
Total apnea index, apneas/h	68.6 ± 8.9	$22.7 \pm 2.3 \ddagger$
Central apnea index, apneas/h	25.0 ± 4.3	22.3 ± 2.2
Obstructive apnea index, apneas/h	43.6 ± 8.3	$0.4 \pm 0.1 \ddagger$
Desaturation index, desaturations/h	63.4 ± 8.5	9.8 ± 1.41

^{*}Data represent mean ± SEM for the diagnostic and CRAP polysomnographic studies of 18 infants.

[†]Significant difference from diagnostic study is denoted by t test (p < 0.05).

 $[\]ddagger$ Significant difference from diagnostic study is denoted by rank–sum test (p < 0.05).

Nasal Continuous Positive Airway Pressure Use In Children With Obstructive Sleep Apnea Younger Than 2 Years of Age*

Ralph Downey III, PhD; Ronald M. Perkin, MD, MA; and Joanne MacQuarrie, RRT, RPSGT

Table 3-Significant Polysomnographic Variables That Changed From Baseline Polysomnogram to CPAP Polysomnogram in Children With OSA (n = 18)*

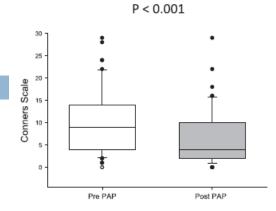
Variable	PS Baseline	t Test (df)	
No. of awakenings > 15 st Apnea index Obstructive apnea index Hypopnea apnea index Longest apnea, s Minimum Sao ₂ , % Sao ₂ < 90%, min	13.5 ± 14.8 12.8 ± 20.0 4.7 ± 13.4 6.7 ± 12.7 25.6 ± 17.4 74.8 ± 20.1 22.2 ± 25.5	5.5 ± 5.2 4.5 ± 13.4 2.0 ± 7.3 2.0 ± 5.7 8.2 ± 7.3 87.3 ± 9.5 6.4 ± 14.9	3.8 (16) § 8.7 (16) ‡ 3.9 (17) 2.3 (17) ‡

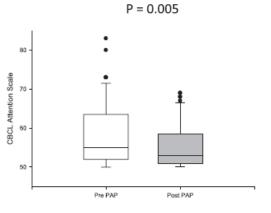
^{*}Values given as mean \pm SD. df = degrees of freedom; Sao₂ = arterial oxygen saturation. See Table 1 for other abbreviation.

[†]For the entire sleep period.

p < 0.05.

p < 0.0001.


^{||}p < 0.001.


Effects of Positive Airway Pressure Therapy on Neurobehavioral Outcomes in Children with Obstructive Sleep Apnea

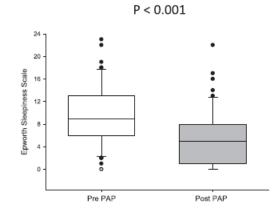
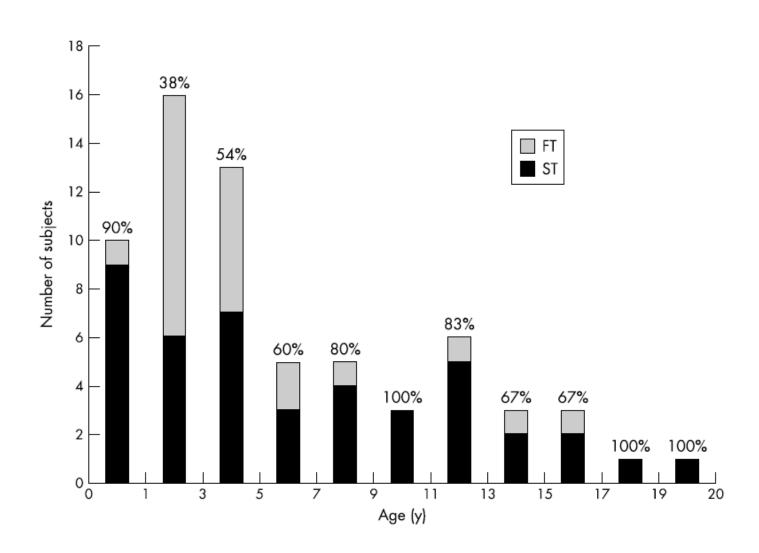
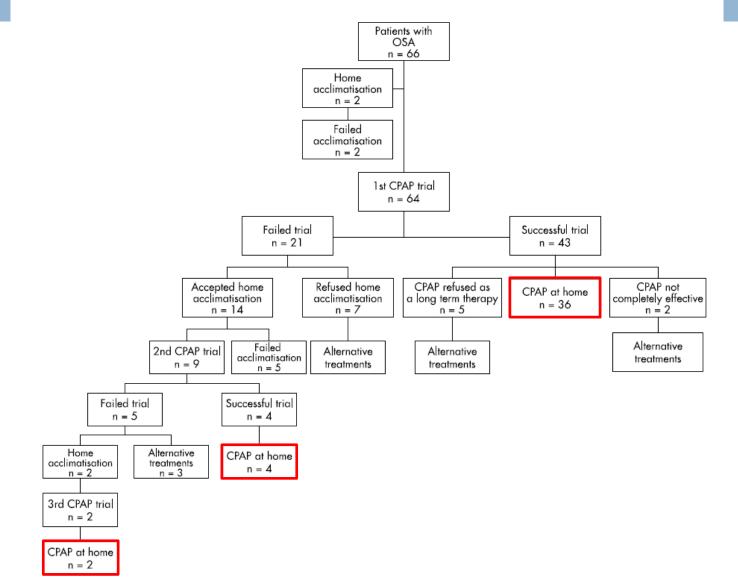

Carole L. Marcus¹, Jerilynn Radcliffe², Sofia Konstantinopoulou¹, Suzanne E. Beck¹, Mary Anne Cornaglia¹, Joel Traylor¹, Natalie DiFeo¹, Laurie R. Karamessinis¹, Paul R. Gallagher², and Lisa J. Meltzer³

TABLE 3. FREQUENCY OF CHILDREN FALLING IN THE CLINICALLY ABNORMAL RANGE ON NEUROBEHAVIORAL MEASURES AT BASELINE AND AFTER PAP THERAPY

		$\overline{}$	
Measure	Baseline	On PAP	P Value
Conners Abbreviated Symptom Questionnaire*	10 (19.2)	6 (11.5)	0.289
Modified Epworth Sleepiness Scale	14 (26.9)	5 (9.6)	0.004
Child Behavior Checklist			
Attention problems	13 (25)	8 (15.4)	0.18
Internalizing	13 (25)	9 (17.3)	0.34
Externalizing	8 (15.4)	6 (11.5)	0.73
Total	17 (32.7)	12 (23.1)	0.063
OSAS-18			
Moderate impairment	28 (53.8)	5 (9.6)	< 0.001
Large impairment	9 (17.3)	2 (3.8)	0.039
PedsQL			
Impairment (caregiver report)	27 (51.9)	16 (30.8)	0.013
Impairment (child report) [†]	26 (61.9)	13 (31)	0.002

Use of nasal continuous positive airway pressure as treatment of childhood obstructive sleep apnea

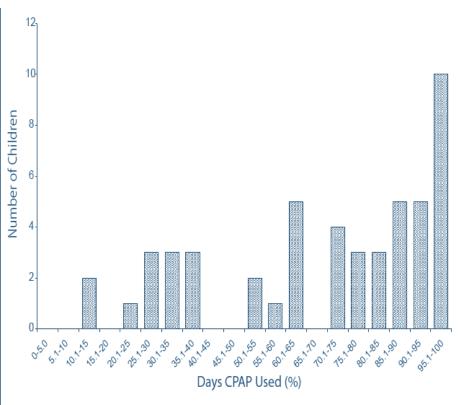

Carole L. Marcus, MBBCh, Sally L. Davidson Ward, MD, George B. Mallory, MD, Carol L. Rosen, MD, Robert C. Beckerman, MD, Debra E. Weese-Mayer, MD, Robert T. Brouillette, MD, Ha T. Trang, MD, PhD, and Lee J. Brooks, MD


ORIGINAL ARTICLE

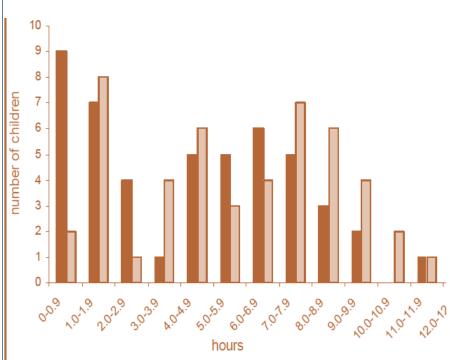
The use of nasal continuous positive airway pressure to treat obstructive sleep apnoea

F Massa, S Gonsalez, A Laverty, C Wallis, R Lane

Arch Dis Child 2002;87:438-443



PEDIATRICS


Compliance Rates in Children Using Noninvasive Continuous Positive Airway Pressure

Anne R. O'Donnell, FRACP, PhD1; Candice L. Bjornson, MD, MSc1; Shelly G. Bohn, BSc, RPSGT; Valerie G. Kirk, MD1

University of Calgary, Alberta Children's Hospital, Calgary, Canada

Figure 2—Distribution of days nasal continuous positive airway pressure (nCPAP) used (n = 50). Most children used nCPAP at least half of the nights.

Figure 3—Compliance with nasal continuous positive airway pressure (nCPAP) (n = 50). Dark bars represent mean daily use, in hours; shaded bars represent mean nCPAP daily use on days nCPAP used, in hours.

Steep Med Cim. Addition mandscript, available in 1 WC 2013 June 01.

Improving Positive Airway Pressure Adherence in Children

Michelle S. King, MD, Melissa S. Xanthopoulos, PhD, and Carole L. Marcus, MBBCh*
Sleep Center, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA

Massa et al,36 2002

Marcus et a1,17 1994

N = 66 children

N = 94 children

64% male

59% male

Infant to

2 wk to

19 y

19 y

All moderate to severe

OSAS (AHI >5 per hour)

Authors, Ref. Year	P opulation	Age	OSAS Characteristics	Associated Conditions	Measure of Adherence	Findings	
DiFeo et a1, ⁴³ 2012	N = 56 children and their parents 68% male 59% African American 36% Caucasian	2–16 y	AHI 19 ± 16/h Naïve to CPAP	71% obese 23% with neurodevelopmental disabilities 20% with genetic syndromes	Usage data from machine (at 1 and 3 mo)	Average use 3 ± 3 h per night after first month, 2.8 ± 2.7 h on third month Greatest predictor of use was maternal education Older, typically developing African American youth with low social support had poor adherence	
Simon et a1, ⁴⁴ 2012	N = 51 children and their parents 51% male 51% non-Hispanic Caucasian 37% African American 64% had Medicaid	8–17 y	Average AHI 17/h Average CPAP use of 22.9 mo	73.5% overweight/ obese	Usage data from machine	Poor adherence with average use of 3.35 h per night Questionnaire developed was able to identify specific barriers to CPAP	
Marcus et a1, ⁴¹ 2006	N = 29 children 72% male 51% African American	2–16 у	Newly diagnosed OSAS	65% obese 10% craniofacial abnormalities 34% systolic hypertension	Parental report and usage data from machine for 6 mo	Average use 3.8 ± 3.3 h per night 9 dropouts Parental report overestimated actual use No difference in adherence between CPAP and BPAP	
O'Donnell et al, ³⁷ 2006	N = 50 children	Mean 10 ± 5.1 y 66% male	Median AHI = 11.3	78% with comorbidity	Usage data from machine	Average use 6.3 h per night	
	N = 20 children 55% African American 30% Caucasian		,	45% with some degree of developmental delay	Usage data from machine	3 groups:	
		American	referred by physicians			1 Consultation (usage 8.58 h/night)	
						2 Consultation with behavior therapy (usage 5.88 h/night)	
						3 No consultation/behavior therapy (usage 0.67 h/night)	

35% craniosynostosis

9.1% isolated facial defects

25% craniofacial abnormalities

syndromes

6.1% obese 3% trisomy 21 3% cerebral palsy

27% obese

13% trisomy 21

Parental report

Parental report

67.7% report good adherence (uses

12.7% with inadequate adherence

every night and all night long) CPAP tolerated by 86%

Case 1

□ Case 2

SUMMARY

- NCPAP therapy has been shown to be effective in the management of OSA in infants
- Complications are minor
- The vast majority of children are able to be established on NCPAP, with most children wearing NCPAP for a substantial part of the night

- Epidemiological aspects of obstructive sleep apnea, John F. Garvey et al, Journal of Thoracic Disease, 2015
- Pediatric obstructive sleep apnea, Bantu S. Chhangani et al, Indian Journal of Pediatrics, 2010
- Sleep apnea in children, Brooke Elizabeth Holman, 2013
- Obstructive sleep apnoea in children, S. Verhulst and A. Kaditis, Breath, Vol. 7, 2011

- Childhood sleep apnea, Mary E. Cataletto et al, 2017
- Nasal breathing and Continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA), Jan H. Hollandt et al, Sleep and Breathing, Vol. 7, 2003
- Obstructive sleep apnea in infants and its management with nasal continuous positive airway pressure, Frances McNamara et al, Chest 1999

- Nasal continuous positive airway pressure use in children with obstructive sleep apnea younger than 2 years of age, Ralph Downey III et al, Chest, 2000
- 9. Use of nasal continuous positive airway pressure as treatment of childhood obstructive sleep apnea, Carole I. Marcus et al, The Journal of Pediatrics, 1995
- 10. Compliance rates in children using noninvasive continuous positive airway pressure, Anne R. O'Donnell et al, Sleep, 2006

- The use of nasal continuous positive airway pressure to treat obstructive apnoea, F. Massa et al, Arch Dis Child, 2002
- Treatment of obstructive sleep apnea in children, Young Min Ahn, The Korean Journal of Pediatrics, 2010
- 13. Effects of positive airway pressure therapy on neurobehavioral outcomes in children with obstructive sleep apnea, Carole L. Marcus, American Journal of Respiratory and Critical Care Medicine, 2012
- 14. Improving positive airway pressure adherence in children, Michelle S. King, Sleep Med Clin, 2014

THANKS FOR YOUR ATTENTION!

